کشف تقلب در صورت های مالی: تحلیل تفاوت بین تکنیک های داده کاوی و قضاوت

پیام:
نوع مقاله:
مقاله پژوهشی/اصیل (دارای رتبه معتبر)
چکیده:

هدف پژوهش حاضر، شناسایی و رتبه بندی عوامل موثر بر کشف تقلب صورت های مالی با استفاده از تکنیک قضاوت به روش فرآیند سلسله مراتبی و تکنیک های داده کاوی می باشد. جامعه ی آماری شامل حسابرسان ارشد، سرپرستان، سرپرستان ارشد، مدیر حسابرسی و شریک موسسه ی و همچنین شرکت های بورس اوراق بهادار تهران می باشد. در راستای هدف پژوهش، تعداد 56 پرسش نامه و داده های 109 شرکت بورسی طی دوره ی زمانی 1391 تا 1396 گردآوری و مورد تحلیل قرار گرفت. بر اساس تکنیک قضاوت، بعد فشار اولویت اول، فرصت دومین عامل و توجیه به عنوان سومین عامل موثر بر کشف تقلب رتبه بندی می شوند که این نتایج با سایر تکینک-ها تفاوت دارد. از لحاظ تجربی، رویکردهای شبکه ی عصبی و درخت تصمیم در طبقه بندی صحیح نمونه ی مورد آموزش و آزمایش شبکه از نرخ دقت 65/98 درصد (شبکه ی عصبی)، 5/91 درصد (درخت تصمیم) و 79/69 درصد (شبکه ی عصبی)، 10/69 درصد (درخت تصمیم) برخوردار است، که از مدل لجستیک دقیق تر می باشد که در این روش تنها به 32/72 درصد و 10/88 درصد طبقه بندی صحیح در ارزیابی وقوع تقلب می رسد. علاوه بر این، به طور قابل توجه خطای نوع دوم ناشی از مدل درخت تصمیم در مقایسه با بکارگیری شبکه ی عصبی و مدل لجستیک از 18/58 درصد و 7/72 درصد به 6/55 درصد کاهش می یابد. با توجه به شاخص دقت، مدل درخت تصمیم نسبت به سایر مدل ها از کارآیی بیشتری برخوردار است؛ بنابراین از بین تکنیک های داده کاوی، وزن هر کدام از متغیرهای ورودی مدل درخت تصمیم مبنای رتبه بندی نهایی متغیرهای پژوهش قرار گرفته است.

زبان:
فارسی
صفحات:
119 تا 140
لینک کوتاه:
https://www.magiran.com/p2254131 
مقالات دیگری از این نویسنده (گان)