Study of Adsorption Isotherm of Copper and Zinc on Humic Acid Extracted from Soil

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Copper and zinc are two of the most important microelements affecting plant growth which can be influenced by many factors. The adsorption processes play a determinative role in solubility of copper and zinc elements in the soil solution and, therefore, their availability to plants. Organic matter is one of the most important factor that have an significant role on the absorption and desorption of elements in the soil. These materials are divided into humic and non-humic groups. Humic substances are divided into three groups of fulvic acid, humic acid and humic, based on their resistance and solubility in acid and base. Humic acid with a medium molecular weight and color is soluble into base and insoluble into acid, and has a medium resistance against the microbial attack. It forms the most important organic part of the soil and is capable to adsorb metals. The purposes of this study were to extract soil humic acid, study the adsorption of metals on the surface of humic acid and to determine the metals adsorption coefficients using adsorption isotherm models.

Materials and Methods

Sampling was done from forest areas of northern Iran. Some physical and chemical properties of the studied soil were determined. Then, the humic acid of the soils was extracted by 0.1 M NaOH and 6 M HCl, and purified by 0.1M HCl+0.3M HF. Functional group, E4/E6 ratio (Optical density or absorption of dilute solutions at wavelengths of 465 and 665 nm), and humification index of the extracted humic acid were measured. Some other properties of the extracted humic acid have also been analyzed. To study the adsorption isotherms of Zn and Cu in the presence of humic acid, solutions with concentrations of 10, 20, 40, 60 and 80 mg/L of  ZnCl2 (zinc adsorption testing) and CuSO4 (copper adsorption testing) were prepared, respectively in a 0.01M Ca(NO3)2 background solution, and added to 250 g of  humic acid. The samples were shaken for 12 hours (based on the time of equilibrium) at pH=5 and 25 °C in incubator shaker, then the samples were centrifuged and the supernatant was passed through filter paper and measured using atomic adsorption spectrophotometer device. The difference between initial concentration and final concentration identified the amount of adsorbed element.

Results and Discussion

The results of the acidic functional groups measurement in the humic acid samples revealed that the most of total acidity (60%) was due to the presence of phenolic groups while the carboxylic groups were responsible for the remaining (40%). Phenolic groups were abundant in the primary stages of the decomposition of humic materials. Since the soil used for extracting humic acid was covered with broad leaf trees and the continuous entry of organic matter into it (the fall of leaves) lasted for many years and due to the low temperature of the soil in part of the year, it can be said that a significant part of the soil organic matter is in the primary or middle stages of humification and the phenolic OH groups/carboxylic groups ratio in the humic acid extracted from them was high. The equilibrium time for adsorption of both  metals occured at 12 h to achieve maximum adsorption level in the presence of humic acid. The obtained experimental data were fitted to three models of Langmuir, Freundlich, and Tampkin. The accuracy of mentioned models to fit data were estimated based on the detection coefficient (R2) and the roots of mean square error (RMSE). The results showed that the Freundlich model with higher detection coefficient and lower roots of mean squared error describes the adsorption of copper and zinc elements, well. To better compare the adsorption of the elements by humic acid, Langmuir's b parameter (Expresses maximum adsorption) can be used. The maximum adsorption of copper (23.04 mg/g) by humic acid was higher than zinc adsorption (13.8 mg/g). This trend is consistent with the Irving–Williams series of divalent elements: Mn < Fe < Zn < Co < Ni < Cu. It is generally believed that humic acid is a good complexing agent for many metal ions and its binding to metal ions can improve the adsorption. Significance differences were tested by a parametric 𝑡-test or 𝐹 statistics in ANOVA (analysis of variance). There was a significant correlation between the maximum adsorption of metals (b) and the properties of humic acid at a probability level of 5%.

Language:
Persian
Published:
Journal of water and soil, Volume:35 Issue: 1, 2021
Pages:
121 to 136
https://magiran.com/p2257625  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!