Calcium Channel Blockers: New Therapeutic Targets for Alzheimer's Disease
Alzheimer disease (AD) is the most common type of dementia in the elderly. Memory impairment usually occurs gradually and progressively. AD has not only been associated with decreased cerebral acetylcholine concentration, oxidative stress, and beta-amyloid protein deposition, but more recent studies have shown that neurodegeneration induced by disturbance of the intracellular calcium homeostasis is also involved in the pathophysiology of the disease. It has been reported that calcium channel blockers (CCBs) have beneficial effects in different models of memory impairment. Here, we review and discuss the effects of CCBs, especially N-types, as novel agents that have effects on memory deficits in animal models of AD. on contrary to the L-type calcium channels, which are presented in the other organs in addition to nerve cells, N-type calcium channels are commonly located on the neurons. The main advantage of N-type CCBs is their lower side effects than other CCBs.
Targeting the N-type CCBs may contribute to the new strategies for the treatment of AD.