A Comparison of Deep Learning and Pharmacokinetic Model Selection Methods in Segmentation of High-Grade Glioma

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Purpose

Glioma tumor segmentation is an essential step in clinical decision making. Recently, computer-aided methods have been widely used for rapid and accurate delineation of the tumor regions. Methods based on image feature extraction can be used as fast methods, while segmentation based on the physiology and pharmacokinetic of the tissues is more accurate. This study aims to compare the performance of tumor segmentation based on these two different methods.

Materials and Methods

Nested Model Selection (NMS) based on Extended-Toft’s model was applied to 190 Dynamic Contrast-Enhanced MRI (DCE-MRI) slices acquired from 25 Glioblastoma Multiforme (GBM) patients in 70 time-points. A model with three pharmacokinetic parameters, Model 3, is usually assigned to tumor voxel based on the time-contrast concentration signal. We utilized Deep-Net as a CNN network, based on Deeplabv3+ and layers of pre-trained resnet18, which has been trained with 17288 T1-Contrast MRI slices with HGG brain tumor to predict the tumor region in our 190 DCE MRI T1 images. The NMS-based physiological tumor segmentation was considered as a reference to compare the results of tumor segmentation by Deep-Net. Dice, Jaccard, and overlay similarity coefficients were used to evaluate the tumor segmentation accuracy and reliability of the Deep tumor segmentation method.

Results

The results showed a relatively high similarity coefficient (Dice coefficient: 0.73±0.15, Jaccard coefficient: 0.66±0.17, and overlay coefficient: 0.71±0.15) between deep learning tumor segmentation and the tumor region identified by the NMS method. The results indicate that the deep learning methods may be used as accurate and robust tumor segmentation.

Conclusion

Deep learning-based segmentation can play a significant role to increase the segmentation accuracy in clinical application, if their training process is completely automatic and independent from human error.

Language:
English
Published:
Frontiers in Biomedical Technologies, Volume:8 Issue: 1, Winter 2021
Pages:
50 to 60
https://magiran.com/p2268493  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!