مقایسه روش های طبقه بندی ماشین بردار پشتیبان و شبکه عصبی مصنوعی در تهیه ی نقشه کاربری اراضی (مطالعه موردی: پارک ملی بوجاق)

پیام:
نوع مقاله:
مطالعه موردی (بدون رتبه معتبر)
چکیده:

پارک های ملی و پناهگاه های حیات‌وحش از مهم ترین سرمایه های اکولوژیکی به شمار می روند. ازاین‌رو اطلاع از تغییرات کمی و کیفی کاربری اراضی آن ها نقش اساسی در کیفیت مدیریت این مناطق دارد. الگوریتم های متنوعی برای طبقه بندی تصاویر ماهواره ای در سنجش‌ازدور توسعه‌یافته‌اند، انتخاب الگوریتم مناسب طبقه بندی در دستیابی به نتایج صحیح نقش بسیار مهمی را ایفا می کند. در این تحقیق با مقایسه صحت طبقه بندی دو الگوریتم شبکه عصبی مصنوعی و ماشین بردار پشتیبان، الگوریتم دقیق‌تر تعیین و از آن برای بررسی روند تغییرات کاربری اراضی استفاده شد. تحقیق حاضر در پارک ملی بوجاق واقع در استان گیلان طی سال های 2000 تا 2017 با استفاده از تصاویر ماهواره‌ایETM+ و OLI لندست 7 و 8 انجام گرفت. نتایج نشان داد که الگوریتم ماشین بردار پشتیبان به ترتیب با دقت کل و ضریب کاپا، 42/86 و 83/0 برای سال 2000 و 65/90 و 88/0 برای سال 2017، در مقایسه با الگوریتم شبکه عصبی مصنوعی به ترتیب با دقت کل و ضریب کاپا، 71/83 و 80/0 برای سال 2000 و دقت کل و ضریب کاپا، 25/89 و 87/0 برای سال 2017، تصاویر ماهواره‌ای را بهتر طبقه بندی کرده است؛ بنابراین، از نقشه های کاربری اراضی حاصل از الگوریتم ماشین بردار پشتیبان جهت بررسی تغییرات کاربری استفاده شد. بررسی روند تغییرات کاربری اراضی با این روش مشخص کرد که در طی دوره بررسی‌ شده، مساحت کاربری های پیکره آبی، دریا، پوشش علفی و کشاورزی کاهش‌یافته است درحالی‌که کلاس کاربری های باتلاقی، درختی و بدون پوشش افزایش‌یافته است.

زبان:
فارسی
صفحات:
47 تا 60
لینک کوتاه:
https://www.magiran.com/p2272539 
مقالات دیگری از این نویسنده (گان)