Electrochemical Analysis of Sunset Yellow Based on NiO-SWCNTs NC/IL Modified Carbon Paste Electrode in Food Samples
In this study, arapid and sensitive electrochemical electrode was fabricated to measure the amount of sunset yellow in food samples. This analytical sensor was mediated using a NiO-decorated single-walled carbon nanotubes (NiO-SWCNTs) nanocomposite and N-octylpyridinium hexafluorophosphate ionic liquid (IL). The morphology of the NiO-SWCNTs nanocomposite was investigated by means of X-Ray Diffraction (XRD) and Transmission electron microscopy (TEM) methods. Cyclic Voltammetry (CV) and Square Wave Voltammetry (SWV) techniques were utilized to verify the appropriateness of the suggested sensor. In comparison to the bare carbon paste electrode (CPE), the electrochemical response of modified electrode had a considerable improve. According to the Chronoamperometry and scan rate analyses, diffusion index (D) and transfer coefficient (α) were obtained 1.8×10-5 cm2/s and 0.52, respectively. The outcomes achieved from SWV technique demonstrated a reasonable linear dynamic range (LDR) between 0.09 and 750 µM, and the Limit of Detection (LOD) was obtained 0.05 µM. Eventually, the quantity of sunset yellow in real samples showed a recovery range between 99.2 and 99.86%, confirming the accuracy of the proposed sensor.