In Silico Investigation of Flavanone Compounds' Inhibitory Effects on Alpha-Amylase Enzyme and Predicting their Inhibitory Role in Diabetes Progression
Diabetes is one of the most common metabolic disorders. Alpha-amylase plays an important role in the development of diabetes by breaking down polysaccharide. Therefore, the search for natural inhibitor for α-amylase is of particular importance. Therefore, the aim of this study was to investigate the inhibitory effect of flavanone compounds on α-amylase enzyme by bioinformatics method.
This study was performed in the computer environment (Bioinformatics). For this purpose, the structure of flavanone compounds and α-amylase was downloaded from PubChem & Protein Data Ban database, respectively. Then, the drug-like parameter and physicochemical properties of flavanone compounds were investigated by Zink database and the Swiss ADME server, respectively. Then, in order to interact the compounds with α-amylase, one molecular docking software AutoDock Tools 6.0 was used. Finally, the results were analyzed using Discovery Studio 3.5.
The results showed that among the selected flavanone, naringenin compound was more desirable in terms of drug-like and physicochemical properties. Also, the result of molecular docking showed that the naringenin compound with a binding energy of -4.9 kcal/mol had the highest inhibitory effect on the α-amylase.
From this study, it can be calculated that naringenin compound shows more inhibitory ability due to its proper placement in the active site of α-amylase enzyme and interaction of key amino acids. By further investigation of this natural compound in In vivo & In vitro, it can be used as a natural inhibitor for the inhibition of α-amylase and the prevention of diabetes.