Efficiency of response surface methodology for optimizing of removal of meloxicam from aqueous solutions using Fe3O4@HKUST-1 magnetic nanocomposite
In the present study, HKUST-1 magnetic nanocomposite was prepared using the hydrothermal method and pre-synthesis modification. The aforementioned magnetic nanocomposite was characterized by the FT-IR, SEM, XRD and VSM techniques. In addition, the ability of this metal-organic framework to remove of the non-steroidal anti-inflammatory drug, Meloxicam, from aqueous solutions was studied. The widespread application of Meloxicam and the inefficient treatment of wastewater have resulted in the detect of the drug in water resources which can affect human health and/or ecosystems negatively. Therefore, the removal process of meloxicam was investigated by Fe3O4@HKUST-1 as the sorbent. Thus, the effect of variables factors on the removal process such as pH (7), absorbent weight (0.7 mg) and absorbent and absorbed proximity time (3 min) were optimized by the Central Composite Design at Design Expert software (10.0.7 version), the optimal conditions with desired function were obtained by the response surface methodology. Investigating the absorption isotherm confirms the adsorption behavior based on Freundlich and Langmuir isotherm. The most important advantages of the proposed nanocomposite as the absorbent include fast absorption process, low costs, high efficiency due to the large surface area and the porous structure of the Metal-organic framework. The resulted data showed the high removal efficiency (93.14%) and adsorption capacity (125.11mg g -1 ) of the proposed sorbent.