Numerical simulation of mixed convection of Bingham fluid between two coaxial cylinders
In this paper, mixed convection of Bingham fluid between two coaxial cylinders has been studied numerically without using any regularization method. The temperature of the inner rotating circle is higher than the temperature of the outer stationary circle. The finite volume method and non-iterative PISO algorithm have been employed to solve the problem. One of OpenFOAM solver, icoFoam, has been modified for solving the exact Bingham model. After validating the modified solver, it has been used to solve the problem for the following ranges of conditions: Reynolds number, Re=10, Prandtl number, Pr=10, Grashof number, Gr=500, Bingham number, 0≤Bn≤1000, and aspect ratio (AR) of 0.1. The effects of the Bingham number on flow and heat transfer characteristics such as the shape and size of the unyielded regions, streamline contours, the local and mean Nusselt number, and the torque coefficient have been investigated. The mean Nusselt number and the torque coefficient decreases and increases, respectively, when the Bingham number increases. The variation range of the local Nusselt number and dimensionless tangential stress on the inner wall decrease with Bn.