False-Negative Results in Taqman One-Step RT-PCR Test: Evaluation of Endogenous Internal Control Function Used in SARS-CoV-2 Detection Tests
Taqman one-step real-time PCR (RT-PCR) has special importance due to its high sensitivity and specificity in the diagnosis of infectious diseases such as viral infections. In the recent pandemic of SARS-CoV-2, diagnostic kits based on this method are commonly used for molecular detection. One of the main systematic errors that misinterpret the results is using inaccurate internal control in RT-PCR diagnostic kits. Designing primers and probes that span exon-exon junction will avoid genomic DNA amplification and lead to obtaining high specific results.
This study aimed to evaluate the endogenous internal control of primers and probe for RNase P RNA to reduce false-negative results in respiratory samples.
In this study, 30 samples of patients who were negative for SARS-CoV-2, influenza A, and influenza B were re-evaluated for SARS-CoV-2 using newly designed primers and probes for RNase P RNA (ultra-specific primers and probe). We also performed bioinformatics analysis on CDC-approved primers and probes of RNase P endogenous internal control.
In this analysis, we specified the location of these newly designed primers and probe on target mRNA and genomic DNA. Then, the Taqman one-step RT-PCR method was performed using both CDC-approved primers and probes along with our ultra-specific primers and probe for RNase P RNA. Based on bioinformatics analysis, the attachment sites of the CDC-approved primers and probe for endogenous internal control of RNase P are located on the first exon of this gene. In addition to identifying the target gene sequence, these primers and probe also non-specifically detect similar sequences on the genomic DNA.
The present study showed that the use of specific primers and probes introduced by CDC for SARS-CoV-2 and influenza virus may cause false results due to non-specific binding to the genomic DNA. Therefore, choosing the right internal control for RNase P RNA can be useful in achieving very accurate results.