A New Amphotericin B-loaded Trimethyl Chitosan Nanoparticles as a Drug Delivery System and Antifungal Activity on Candida albicans Biofilm

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Amphotericin B (AmB) is an effective antifungal agent; however, the application of AmB is associated with a number of drawbacks. Application of nanoparticles (NPs) is known to improve the efficiency of drug delivery to the target tissues, compared to the traditional methods. In this study, a novel method of NPs preparation was developed. The trimethyl chitosan (TMC) was synthesized using low molecular weight chitosan and was used for the preparation of TMC-NPs through ionic gelation method. Afterward, AmB-loaded TMC-NPs (TMC-NPs/AmB) were prepared and their drug delivery potential was testes. The TMC-NPs and TMC-NPs/AmB were characterized for their structure, particle size, Zeta potential, polydispersity index, morphology, loading efficiency, loading capacity, in vitro release profile, release kinetic, and entrapped AmB potency. The cytotoxicity and antifungal activity of TMC-NPs/AmB against Candida albicans biofilm were evaluated. The quaternization of TMC was estimated to be 36.4%. The mean particle size of TMC-NPs and TMC NPs/AmB were 210±15 and 365±10 nm, respectively, with a PDI of 0.30 and 0.4, ZP of +34±0.5 and +28±0.5 mV, respectively. Electron microscopy analysis indicated uniform spherical shapes with smooth surfaces. The TMC-NPs/AmB indicated LE of 76% and LC of 74.04 % with a potency of 110%. The release profile of TMC-NPs/AmB was best explained by the Higuchi model. The initial release after 10 h was obtained at 38%, and the rates of release after 36 and 84 h were determined at 67% and 76% respectively, which was significantly different (P<0.05) from previous time points. The minimum inhibitory concentration (MIC) (50%) of NPs/AmB and AmB were 0.65 and 1.75 μg/mL, and the MIC 80% were determined at 1.95 and 7.75 μg/mL, respectively, demonstrating a significant improvement in antifungal activity. The half-maximal inhibitory concentration for TMC-NPs/AmB and AmB were estimated at 86 and 105 μg/mL, respectively, indicating a significant reduction in cytotoxicity and the adverse effect. This study could successfully introduce a practical method to synthesize TMC-NPs. The encapsulation process was efficient and significantly improved the antifungal activity of AmB. The developed method can be applied to improve the feasibility of oral delivery while reducing the adverse effects associated with traditional methods.

Language:
English
Published:
Archives of Razi Institute, Volume:76 Issue: 3, Sep 2021
Pages:
575 to 590
https://magiran.com/p2328433  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!