مقایسه عملکرد دو الگوریتم ادغام در سطح ویژگی و سیگنال در تفکیک سیگنال راه رفتن بیماران اسکلروز جانبی آمیوتروفیک از افراد سالم
بیماری اسکلروز جانبی آمیوتروفیک (Amyotrophic lateral sclerosis; ALS) یک بیماری عصبی عضلانی و شایع ترین بیماری نورون های حرکتی است. از آنجا که یکی از مهم ترین علایم اولیه بیماری، وجود اختلالات حرکتی است، بررسی اختلالات راه رفتن در کانون توجه بسیاری از محققان قرار گرفته است. هدف مطالعه حاضر، ارایه الگوریتمی مناسب برای تشخیص بیماری ALS می باشد. از داده های موجود در پایگاه فیزیونت استفاده شده است. این داده ها از 13 بیمار ALS و 16 فرد سالم جمع آوری شده است. در این تحقیق از دو روش ادغام برای ترکیب اطلاعات سیگنال های پای راست و چپ قبل از استخراج ویژگی (ادغام در سطح سیگنال) و پس از استخراج ویژگی (ادغام در سطح ویژگی) استفاده شده است. از ویژگی های غیرخطی کمی سازی سیگنال حرکتی راه رفتن افراد سالم و بیمار استفاده کردیم، که عبارتند از: لگاریتم انرژی، آنتروپی شانون، هیگوچی فراکتال، فراکتال کتز. سپس، با انجام آزمون آماری ویلکاکسون بر ویژگی های استخراجی، اقدام به یافتن تفاوت معنادار میان گروه ها نمودیم. برای تفکیک افراد ALS از گروه نرمال از طبقه بند ماشین بردار پشتیبان استفاده شد. الگوریتم پیشنهادی توانایی تشخیص بیماری ALS را با میانگین درصد صحت % 87 دارا می باشد. بیش ترین درصد صحت طبقه بندی با استفاده از ویژگی کتز بدست آمد که % 100می باشد. سیستم پیشنهادی مبتنی بر الگوریتم های ادغام نه تنها حجم محاسبات را کاهش می دهد، بلکه در ارایه نرخ های تفکیک نیز عملکرد بسیار خوبی دارد. این چارچوب می تواند راه را برای توسعه سیستم های تشخیصی ساده با عملکرد بالا در آینده بگشاید.