Using AMMI model and its parameters for yield stability analysis of rice (Oryza sativa L.) advanced mutant genotypes of Tarrom-Mahalli

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

Genotype×environment interaction is one of the most important production challenges for plant breeders. Line selection with desirable yield is severely affected by genotype×environment interaction. In order to consider this interaction, 13 M8 mutant genotypes derived from Tarrom-Mahalli rice land races along with 3 control, Tarrom-Mahalli, Tarrom-Jelodar and Neda were used to evaluate their grain yield stability and adaptability using a RCBD design with 3 replications and two regions in Mazandaran province in 2016-2017. Analyses were carried out using the AMMI method. Effects of genotype, environment and their interactions were significant. Two components of the first model covered more than 91% of the interaction variance. The bi-plot showed that genotypes 15, 18, 31, 30 and 33, Tarrom-Jelodar and Tarrom-Mahalli were the stable genotypes. Results of AMMI model statistics showed that according to AMGE statistics, Neda, genotypes 26 and 31, based on ASI, MASI and MASV statistics, genotypes 33, 26 and 30 and based on AVAMGE, DA, FA, SIPC and ZA statistics, genotypes 33, 30 and 31 had the highest stabilities, respectively. According to the results of the indices of simultaneous selection for grain yield and stability for each of AMMI statistics it is observed that genotypes 33, 31, Tarrom-Jelodar, genotypes 26 and Neda cultivar are identified as the stable high yielding genotypes. Results showed that most of stability statistics based on the AMMI model are appropriate stability indices for identifying stable genotype with high grain yield.

Language:
English
Published:
Iranian Journal of Genetics and Plant Breeding, Volume:9 Issue: 1, Apr 2020
Pages:
70 to 83
https://magiran.com/p2354391  
مقالات دیگری از این نویسنده (گان)