Simulation of photocatalytic degradation of methylene blue in planar microreactor with integrated ZnO nanowires
In photocatalytic microreactors the catalyst layer is obtained by integration of nanostructure films of semiconductors. One of these nanostructures that have a good photocatalytic activity is ZnO nanowires. The photocatalytic degradation of methylene blue in a continuous flow microreactor with ZnO nanowires deposited film is simulated. A finite element model is developed using COMSOL Multiphysics version 5.3 software to simulate the microreactor performance. The kinetic law of the photocatalytic reaction is assumed to be Langmuir–Hinshelwood. The kinetic constants kLHa and K are determined 1.43×10-7 mol/m2s and 7.5 m3/mol, respectively. The percent of average absolute deviation of the model in predicting the methylene blue outlet concentration obtained about 0.12% mol/m3. The model showed a very good agreement with the published experimental data. The effect of microreactor depth, methylene blue inlet concentration and flow rate on the methylene blue degradation is also investigated. The simulation results showed that the microreactor with shorter depth and lower values of inlet concentration and flow rate has higher efficiency. Thiele modulus and Damköhler number are both estimated lower than 1. It indicates that the photocatalytic reactions occur without internal and bulk mass transfer limitations.
-
Effect of humic acid on adsorption of methylparaben from aqueous solutions onto commercially available granular activated carbons
A. R. Solaimany Nazar *, M. B. Kurade, M. Ali Khan, B.-H. Jeon
Scientia Iranica, May & Jun 2022 -
Three-dimensional simulation of microcapillary and microchannel photo reactors for organic pollutant degradation from contaminated water using computational fluid dynamics
Elham Sadat Behineh, AliReza Solaimany Nazar *, Mehrdad Farhadian, Fayazeh Rabanimehr
Advances in Environmental Technology, Autumn 2019