Probabilistic Siesmic Performance assessment of tall biuldings having special RC moment frames equipped with buckling restrained braces (BRB)
Concrete shear walls has improved stiffness and ductility of moment frame systems in tall buildings,but high weight acheaved system can produce foundation engineering problems in loos coastal soils;An appropriate choise is substituting this shear walls with buckling restrained braces (BRB),have less weight and provide appropriate ductility and stiffness.In seismic design of structures3 models of 15, 25 and 35 floors in two systems Special reinforced concrete momment frame and special reinforced concrete momment frame equipped with buckling restrained brace ,also has lighter sections,desinged In accordance with the norms of Iranian design codes. After the sections are finalized in etabs 2016,3d models has been dane in opensees And by choosing a number of appropriate accelerometers compatibled with the region incremental Nonlinear Dynamic Analysis done. most of the floors drift Was considered As a demand parameter. By selecting the HAZUS relative displacement capacity Quadruple seismic performance damage levels (slight, moderate, extensive and complete) fragility curves produced. In higher rise models Fragility is more evident and median fragility difference increases from 0 in slighe damage level up to 0.13g in complete damage level in 3 type of building models that shows better Seismic performance in special brb moment systems than ordinary special moment frame systems.