Development and assessment of hybrid self-centering structures for seismic resilience
In this study, a novel hybrid self-centering system is introduced. This system consists of self-centering systems and Pall friction dampers. The design methodology of hybrid self-centering systems is developed and some examples of the designed hybrid self-centering are presented. Hybrid self-centering systems not only have the capability of dissipating energy but can also remove or arrange residual drifts of structures. In fact, hybrid self-centering systems can maintain design target residual drifts (zero or any) during lateral loading similar to the pure self-centering system and have the benefits of high capacity energy dissipation of Pall friction dampers. The hybrid self-centering system is developed for seismic resilience in terms of economic benefits, ready-to-use after the earthquake event, and practical fabrication. To evaluate the proposed design method, different low- to high-rise (3-, 6-, 9- and 12-story) buildings are selected from the literature, redesigned based on the proposed method, and then subjected to cyclic loading. Results are presented in terms of the cyclic response, residual drift and energy dissipation capacity of structures. Results indicate that the proposed design equations precisely meet the target structural performance (target residual drift) of the hybrid self-centering system and this system is obviously a superior system compared to the pure self-centering or Pall system.