Characterization and Application of Activated Water Treatment Sludge for Removing Pb(II) Ions from the Water Sample
The problem of toxic-metal-contaminated water has become a great environmental concern and presents significant hazards to the public health and economy. In this study, drinking water treatment sludge was activated and used as an efficient, cheap and cost effective sorbent in the removal of Pb (II) ion from water samples. The prepared material was characterized by Fourier transfer infrared spectroscopy (FTIR), X-ray powder diffraction (XRD), scanning electronic microscopy (SEM), surface analysis (BET method) and X-ray fluorescence (XRF) analysis. The effects of various parameters such as the solution pH, adsorption time, adsorbent dosage, and initial metal ion concentration upon adsorption were investigated. Equilibrium isotherm studies were carried out with different initial concentrations of Pb (II), and three models (Langmuir, Freundlich and Temkin isotherms) were utilized to analyze the equilibrium adsorption data. The best adsorption performance was obtained at the following conditions: pH of sample, 7.5; contact time, 15 min; adsorbent dosage, 0.3 g; intitial concentration of Pb (II), 20 mg/L; agitation speed, 200 rpm. The results revealed that the adsorption process obeyed the Langmuir model, with the maximum monolayer capacity (qmax) and the Langmuir constant (KL) calculated as 54.9 mg/g and 0.973 mg/L, respectively. Kinetic studies indicated that the adsorption process followed a pseudo-second-order model based on the obtained R2 values. Comparison study with the other natural adsorbents revealed that the activated sludge has the highest adsorption capacity and provides the lowest adsorption time. Desorption study exhibited that the Pb (II) ions can be desorbed from the adsorbent by 0.25 mol/L HCl solution with a recovery percentage of 98%. The results exhibited that activated sludge is an efficient and cost-effective material for the adsorption of Pb (II).