ارائه یک الگوریتم تعادل بار مبتنی بر پیش بینی در شبکه های نرم افزارمحور
شبکههای نرمافزارمحور یک معماری جدید در شبکه است که لایه کنترل را از لایه داده جدا میسازد. در این رویکرد مسیولیت لایه کنترل به نرمافزار کنترلر واگذار میشود تا رفتار کل شبکه را به طور پویا تعیین نماید. نتیجه این امر، ایجاد یک شبکه بسیار منعطف با مدیریت متمرکز است که در آن میتوان پارامترهای شبکه را به خوبی کنترل کرد. با توجه به افزایش روزافزون کاربران، ظهور فناوریهای جدید، رشد انفجاری ترافیک در شبکه، برآوردهسازی الزامات کیفیت خدمات و جلوگیری از کمباری یا پرباری منابع، تعادل بار در شبکههای نرمافزارمحور ضروری میباشد. عدم تعادل بار باعث بالارفتن هزینه، کاهش مقیاسپذیری، انعطافپذیری، بهرهوری و تاخیر در سرویسدهی شبکه میشود. تا کنون الگوریتمهای مختلفی برای بهبود عملکرد و تعادل بار در شبکه ارایه شدهاند که معیارهای متفاوتی مانند انرژی مصرفی و زمان پاسخ سرور را مد نظر قرار دادهاند، اما اغلب آنها از ورود سیستم به حالت عدم تعادل بار جلوگیری نمیکنند و خطرات ناشی از عدم تعادل بار را کاهش نمیدهند. در این مقاله، یک روش تعادل بار مبتنی بر پیشبینی برای جلوگیری از ورود سیستم به حالت عدم تعادل بار با بهرهگیری از الگوریتم ماشین یادگیری افراطی پیشنهاد میشود. نتایج ارزیابی روش پیشنهادی نشان میدهد که از نظر تاخیر پردازش کنترلکننده، میزان تعادل بار و زمان پاسخگویی به علت تعادل بار بهینه نسبت به روشهای CDAA و PSOAP عملکرد بهتری دارد.