Bioinformatics identification of hub genes involved in osmotic stress of Arabidopsis

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Objective

Plants are often exposed to a variety of environmental stresses such as drought and salinity, which leads to osmotic stress in the plant and ultimately reduces crop growth and productivity. Identification of effective genes at different treatments of osmotic stress can be very helpful in finding genes that are effective in tolerating plant stresses. Therefore, the aim of this study was to identify the hub genes of Arabidopsis model plant in osmotic stress and to introduce them for crop breeding under environmental stresses .

Materials and Methods

In this study, Arabidopsis microarray data that were exposed to mannitol-induced osmotic stress for 1.5, 3, 12 and 24 hours were analyzed separately by GEO2R online tool. Genes with significant expression were identified and the most important genes at each stress level were identified using bioinformatics tools. Then, the hub genes in osmotic stress were identified and their protein interactions and biological processes were studied and discussed .

Results

The result showed that 26, 79, 138 and 184 genes had significant expression at 1.5, 3, 12 and 24 hours after stress, respectively. Based on protein network analysis and biological processes, SDA1, CRK11, CYP81F2, EDA39, PLA2A, T1K7_24, F6N7_24, AT2G25735 and MRH10_18 genes were reported as hub genes at different levels of osmotic stress. The results of molecular function analysis of hub genes showed that these genes involved in oxidative stress, response to hypoxia, regulation stomata movement, hypersensitive response, response to chitin, induced systemic resistance, indole glucosinolate biosynthetic process, defense response by callose deposition in cell wall, response to cadmium ion, phytochelatin biosynthetic process, arsenite transport, defense response to bacteria, insects, fungi, viruses and other environmental stress responsive biological process. 

Conclusions

It seems that the key genes introduced in this study can be used to breed crops under environmental stresses that cause osmotic stress in plants.

Language:
Persian
Published:
Journal of Agricultural Biotechnology, Volume:14 Issue: 1, 2022
Pages:
155 to 174
https://magiran.com/p2429791  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!