Evaluation of the performance of SWAT model in simulating the inflow to the dam reservoir to deal with climate change (Case study: the catchment area upstream of the ZayandehRoud Dam)

Message:
Article Type:
Case Study (دارای رتبه معتبر)
Abstract:

Climate change is one of the biggest challenges facing humanity that affects the sciences related to nature and environment. Changes in factors affecting climate change affect the hydrological responses of watersheds and this phenomenon affects the quantity and quality of water resources such as lakes, reservoirs and dams. Today, the development and progress of computer and computing technologies has had a significant impact on hydrological modeling. In recent years, conceptual and physical models based on the characteristics of watersheds for hydrological systems have attracted the attention of researchers. Due to the emergence of such developments, there will be complications in the process of hydrological modeling. Correct management forecasts in the field of water resources due to the lack of water resources, is one of the topics of interest in the institutions in charge of water resources management, which should use high-precision simulator models for long-term estimates and planning. Considering the crisis and shortage of water resources in Iran, the sub-catchment upstream of Zayandeh Rood Dam was selected as a case study in this research, and the hydrological processes in the sub-basins of Zayandeh Rood Dam were simulated and the inflow to the reservoir of Zayandeh Rood Dam was estimated. For this purpose, the water and soil assessment model SWAT has been used to simulate the rainfall-runoff process and finally to estimate the inflow to the reservoir. Based on the simulated runoff from the three sub-basins of Buin-Damneh, Qala Shahrokh-Chelgerd and Chadegan-Ceshmeh, the model showed acceptable results for the simulation in the three sub-basins mentioned by the model, and it was estimated from the algebraic sum of the three inflows that the mentioned error coefficients are equal to 0.86 has been obtained. This result shows the high accuracy of the models in the simulation

Language:
Persian
Published:
Journal of Climate Change Research, Volume:3 Issue: 10, 2022
Pages:
83 to 103
https://magiran.com/p2476096  
مقالات دیگری از این نویسنده (گان)