Computational Fluid Dynamics Simulation of Blast Wave Using OpenFOAM: the Effect of Solver and Equation of State on the Results Accuracy
Numerical methods as one of the subcategories of theoretical models can predict the behavior of energetic materials with appropriate accuracy and away of experimental tests limitations. In this investigation, computational fluid dynamics tool has been used to predict the blast wave propagation with Consideration of geometrical obstacles. Two solvers (extendedSonicFoam and blastFoam) from the open source technology module, OpenFOAM have been used for simulations and To enhance confirmation with reality, large eddy simulation method was employed for turbulence modeling. In addition to the ideal gas equation of state (EOS), the BKW EOS, which is a complete EOS with an explicit temperature dependence, have been used to correlate the various thermodynamic parameters. Several gauges were positioned to record the pressure-time signals and the experimental data reported in the resources were used for validation. It should be noted that the maximum error of simulations was 12.29% for different blast wave parameters. deviation from standard for ideal gas numerical results was greater than that of real gas assumption and blastFoam solver has been predicted maximum positive phase overpressure, arrival time and positive phase impulse, which are the important parameters of blast wave, with less error in comparison to extendedSonicFoam solver.