Experimental Study and Optimization of the Powder Coating Layer in the Selective Laser Sintering Process
Selective laser sintering is one of the methods of additive manufacturing based on powder bed which is widely used in various industries today. In this process, the amount of laminated mass has a high impact on reducing the porosity and quality of the final parts produced. For this purpose, in this study, a mechanism was designed and developed to investigate and achieve the maximum amount of laminated mass in a laminating process. The optimal state was obtained using the central composite design method. The results show that the parameters of blade velocity, angle under blade, and excess powder percentage have a greater effect on the amount of laminated mass, respectively. The optimized laminated mass was predicted by the experimental model to be 0.811 g, in which case the velocity is 2.78 cm / s, the blade angle is 3.1 ° and the initial powder content is 159%. To validate the model, the experimental experiment was performed based on the parameters of the optimal state, in which the laminated mass was measured 0.83 g, which shows that the error of the obtained model is 2.2%.