Energy harvesting through an integrated design of a semi-submersible offshore platform with point absorber wave energy converters
Increasing the performance of offshore platforms is one of the main aims of the designers. The oil and gas offshore platforms encounter some challenges as the dynamic vibrational response that they always attempt to improve the stability and response of the platforms. On the other hand, many electronic devices on the platform require a supply resource. The transmitted energy of the excited waves into the mechanical vibrations for the platform may be captured by installing some types of WECs. The present study conducts a numerical study on the hydrodynamic analysis of the platform attached with four-point absorber wave energy converters underneath the Amir Kabir semi-submersible platform. The monochromatic regular waves are considered the excitation forces based on the Caspian Sea state. Two different arrangements of WECs and three sizes of sphere buoy are also considered. In addition to calculating the produced power via WECs, the overall performance of the single and integrated platforms is compared from the dynamic response point of view. The results show a considerable difference in the responses of the platform when the WECs are combined. However, the captured power does not depend on the locations of the WECs but is affected by the buoy size of the WECs while the platform response is dependent on the buoy size and also the WECs’ arrangement.