Molecular Studying the effect of simultaneous treatment of Thymoquinone and Cobalt (II) chloride on the expression of genes involved in self-renewal, proliferation, migration and DNA methylation in breast cancer line MCF7 and normal fibroblastic cell line HDF

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Aim

Nowadays, much attention is paid to the effects of natural factors on physiological and pathological processes in human body. In this regard, lack of oxygen or hypoxia is one of the crucial biological factors involved in various physiological processes such as wound healing and pathological processes such as cancer. Moreover, it is very important to find natural compounds affecting the characteristics and functions of cells. Thymoquinone (TQ) is a natural compound derived from certain plants such as Nigella Sativa. It has many biopharmacological effects, including anti-bacterial, anti-oxidant, anti-inflammatory, anti-diabetic, anti-aging, anti-cancer, etc. Given the biopharmacological properties of TQ and the importance of hypoxia as an important factor affecting physiological and pathological processes, this study was designed to investigate the effect of TQ under cobalt (II) chloride-mediated hypoxia on breast cancer and wound healing by evaluating the expression of SOX2, CDK4, c-MET, and DNMT1 genes in a breast cancer cell line (MCF7) and a normal fibroblastic cell line (HDF) that treated with these compounds.

Materials and Methods

In the present study, after the cultivation of MCF7 and HDF cell lines, each of the cells were divided into two groups. The treatment group was treated simultaneously with 500 ng/ml of TQ and 100 μM of cobalt (II) chloride for 24 h and the control group was only treated with cobalt (II) chloride. After incubation time, total RNA extraction, DNase I treatment, and cDNA synthesis were carried out and finally, the expression of target genes was examined by real-time PCR assay. In this study, relative threshold method was used to determine the amount of gene expression changes, and SPSS software and Student's t-test statistical method were used to find the significance of gene expression changes in the treated groups compared to the controls.

Results

The results showed that simultaneous treatment of MCF7 cells with TQ and cobalt (II) chloride significantly (P < 0.05) reduced the expression of CDK4, c-MET, and DNMT1 genes at about 4.35-, 1.89-, and 2.08-fold, respectively, compared to the control group. However, the treatment of MCF7 cells caused a limited increase in the expression of SOX2 at about 1.14-fold, which was not significant according to the significance level of ≥ 1.5. Moreover, simultaneous treatment of HDF cells with TQ and cobalt (II) chloride significantly increased c-MET gene expression by about 1.86-fold. In addition, the treatment of HDF cells caused a slight increase in the expression of CDK4 at about 1.26-fold, which was not significant according to the significance level of ≥ 1.5. Also, the expression of SOX2 and DNMT1 genes has decreased at about 1.28- and 1.32-fold in the treatment group compared to the control group, which were as not significant according to the significance level of  ≥ 1.5.

Conclusion

Overall, it can be concluded that TQ under cobalt (II) chloride-mediated hypoxia may inhibit breast cancer by inhibiting the expression of genes involved in proliferation and migration. In addition, due to the important role of fibroblasts in the wound healing process, TQ may help wound healing under hypoxic conditions by increasing the migration potential of fibroblast cells.

Language:
Persian
Published:
Journal of Cell &Tissue, Volume:13 Issue: 3, 2022
Pages:
200 to 214
https://www.magiran.com/p2542395  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با ثبت ایمیلتان و پرداخت حق اشتراک سالانه به مبلغ 1,390,000ريال، بلافاصله متن این مقاله را دریافت کنید.اعتبار دانلود 70 مقاله نیز در حساب کاربری شما لحاظ خواهد شد.

پرداخت حق اشتراک به معنای پذیرش "شرایط خدمات" پایگاه مگیران از سوی شماست.

اگر مقاله ای از شما در مگیران نمایه شده، برای استفاده از اعتبار اهدایی سامانه نویسندگان با ایمیل منتشرشده ثبت نام کنید. ثبت نام

اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!