Cooperative Control of Mobile Robots in Creating a Runway Platform for Quadrotor Landing
Multi-agent systems are systems in which several agents accomplish a mission in a cooperative manner. In this paper, a novel idea for the construction of a movable runway platform based on multi-agent systems is presented. It is assumed that an aerial agent (quadrotor) decides to make an emergency landing due to reasons such as a decrease in energy level or technical failure, while there is no suitable platform for landing or the agent is not able to reach another place for landing. The goal is to create a specific formation pattern by a group of mobile robots that are smaller than the aerial agent, so that it can land on them. Each of the mobile robots is equipped with flat grid landing pad in its upper part so that when the robots approach each other and form a specific geometric arrangement (such as a pentagon), the landing pads are connected to each other and create a wider platform for landing. Cooperative control of agents (from aerial agent control to mobile robot formation control) is the main goal of this article, which is presented in different dynamic models under directed graph along with proof of Lyapunov-based stability analysis.