Ranking with fuzzy data using symmetrical weights as a secondary goal

Author(s):
Message:
Article Type:
Research/Original Article (بدون رتبه معتبر)
Abstract:

When we use the CCR model in the input-oriented with fuzzy data for ranking with the help of cross-efficiency, there is a possibility that the model will find a different optimal answer. This means that the ranking is not unique, that is, a decision-making unit may be assigned several ranks. Here, the judgment regarding the ranking faces a problem. To solve this problem, a secondary objective is determined for weight selection. According to that secondary objective, a suitable weight is selected from among the optimal solutions. In this article, the secondary goal of the concept of symmetrizing the weights plays a fundamental role in solving the mentioned problem. The model selects weights that are symmetrical, the act of choosing symmetrical weights causes many weights that are not useful to be removed from the set. The decision-making unit that selects symmetrical weights for all indicators, has a better performance than the decision-making unit that does not use symmetrical weights and covers its weak points with low weight and highlights its strong points with high weight. The model along with the mentioned secondary objective is used to evaluate decision-making units with fuzzy input and output, by choosing the optimal weight, a cross-efficiency table is formed. By using the cross-efficiency table, the efficiency of each unit is determined and ranked compared to other units. Units are done.

Language:
English
Published:
International Journal of Data Envelopment Analysis, Volume:10 Issue: 4, Autumn 2022
Pages:
11 to 22
https://magiran.com/p2573535