بازیابی تصاویر پزشکی ریه با استفاده از درهم سازی با ناظر، انتخاب ویژگی mRMR و شبکه های عصبی کانولوشنی عمیق
نویسنده:
نوع مقاله:
مقاله پژوهشی/اصیل (دارای رتبه معتبر)
چکیده:
توسعه پزشکی نوین از یک طرف امکان ذخیره سازی تصاویر پزشکی را فراهم کرده است و از طرف دیگر بدلیل افزایش روزانه ذخیره سازی این قبیل داده، مدیریت و بازیابی آن ها را نیز با مشکل مواجه ساخته است. با توجه به آنکه تصاویر پزشکی به عنوان ابزاری قدرتمند در تشخیص زودرس اغلب بیماری ها مورد استفاده هستند، ارایه سیستمی توانمند که بتواند از حجم رو به رشد تصاویر پزشکی، تصاویری با محتوای مشابه را بازیابی نماید، در کنترل و درمان بسیار موثر است. در این مقاله یک سیستم بازیابی تصاویر پزشکی مبتنی بر شبکه عصبی سیامی متشکل از دو زیر شبکه کانولوشن با 13 لایه ارایه شده است. برای رسیدن به زیر مجموعه بهینه از ویژگی های عمیق استخراج شده توسط سیامی، از تکنیک حداقل افزونگی- حداکثر همبستگی (mRMR) استفاده شده است و پس از درهم سازی باینری ویژگی ها، بازیابی تصاویر مشابه با استفاده از فاصله Hamming انجام می شود. اگر چه مدل مطرح قابلیت بازیابی انواع تصاویر پزشکی سطح خاکستری را دارد، اما برای ارزیابی آن، از دو نوع تصاویر ریه، شامل تصاویر سی تی اسکن بیماران کووید-19 در پایگاه داده CT-COV و تصاویر اشعه X بیماران ذات الریه در پایگاه Pneumonia استفاده شده است. نتایج حاکی از آن است که روش پیشنهاد شده در پایگاه کووید به ترتیب در 5 و 10 تصویر بازیابی توانسته است به میانگین دقت 93.83 % و 92.73 % و در پایگاه داده ذات الریه به میانگین دقت 100 % دست یابد که در مقایسه با روش های پیشین توانسته است بازیابی تصاویر ریه را بهبود ببخشد.
کلیدواژگان:
زبان:
فارسی
صفحات:
1 تا 18
لینک کوتاه:
https://magiran.com/p2573711