Stock Price Movement Prediction Using Directed Graph Attention Network
Prediction of the future behavior of the stock market has always attracted researchers' attention as an important challenge in the field of machine learning. In recent years deep learning methods have been successfully applied in this domain to improve prediction performance. Previous studies have demonstrated that aggregating information from related stocks can improve the performance of prediction. However, the capacity of modeling the stocks relations as directed graphs and the power of sophisticated graph embedding techniques such as Graph Attention Networks have not been exploited so far for prediction in this domain. In this work, we introduce a framework called DeepNet that creates a directed graph representing how useful the data from each stock can be for improving the prediction accuracy of any other stocks. DeepNet then applies Graph Attention Network to extract a useful representation for each node by aggregating information from its neighbors, while the optimal amount of each neighbor's contribution is learned during the training phase. We have developed a novel Graph Attention Network model called DGAT that is able to define unequal contribution values for each pair of adjacent nodes in a directed graph. Our evaluation experiments on the Tehran Stock Exchange data show that the introduced prediction model outperforms the state-of-the-art baseline algorithms in terms of accuracy and MCC measures.