Investigation of structural and luminescent properties of Ca1-xZrO3:xCe3+ nanophosphors
In this study, structural studies, photoluminescence and thermoluminssence properties of CaZrO3 nanoparticles added with Ce3+ ion at different concentrations (x = 0.1-0.6 mol%) were investigated. Structural analysis of the samples was performed by X-ray diffraction (XRD) and field emission scanning electron microscopy (FE-SEM). The XRD pattern indicated the formation of a perovskite structure at 700 °C. The thermoluminssence (TL) properties of CaZrO3:xCe3+ nanophosphors were investigated at room temperature under X-ray at different times. Maximum TL intensity was obtained for Ca0.998Ce0.002ZrO3 samples. The sample of Ca0.998Ce0.002ZrO3 was exposed to X-ray at different time intervals from one to 15 minutes. As the irradiation time increases, the number of charge carrier increases, which results in an increase in the intensity of TL. Linearity, reproducibility and fading were also investigated for this sample, which is suitable for TL dosimetry due to its significant stability, low fading and linearity of the TL response. Study of photoluminescence (PL) behavior at room temperature showed when the phosphors were excited by light with a wavelength of 253 nm, three emission peaks at 404, 425 and 488 nm were obtained, respectively. By increasing Ce concentration, the emission peaks in PL spectra slightly shift from violet region to blue region.