Different fabrication methods and ideal properties of scaffolds for tissue engineering applications.

Message:
Article Type:
Review Article (دارای رتبه معتبر)
Abstract:

Tissue engineering is a science that uses the combination of scaffolds, cells and active biomolecules to make a tissue in order to restore or maintain the function and improve the damaged tissue or even an organ in the laboratory. Artificial skin and cartilage are among the engineered tissues that have been approved by the US Food and Drug Administration (FDA) for clinical use. Accuracy in the design and fabrication of scaffolds with ideal properties such as biocompatibility, biodegradability, mechanical and surface properties is very important for applications in tissue engineering. Furthermore, these techniques should be able to translate the fabricated scaffolds from potential to actual applications. Several fabrication technologies have been used to design ideal 3D scaffolds with controlled nano- and micro-structures to achieve the ultimate biological response. This review highlights the applications and ideal parameters (biological, mechanical and biodegradability) of scaffolds for various biomedical and tissue engineering applications. This review discusses in detail the various design methods developed and used to design scaffolds, namely solvent casting/particle leaching, freeze drying, thermally induced phase separation (TIPS), gas foaming. (GF), powder foam, sol-gel, electrospinning, stereolithography (SLA), fused deposition modeling (FDM), selective laser sintering (SLS), jet binder technique, inkjet printing, laser-assisted bioprinting, writing It reviews direct cell and metal-based additive manufacturing, focusing on their advantages, limitations, and applications in tissue engineering.

Language:
Persian
Published:
Iran Polymer Technology Research and Development, Volume:8 Issue: 2, 2023
Pages:
63 to 75
https://magiran.com/p2634466