ارائه مدلی نوین جهت بهبود تشخیص نفوذ در شبکه با استفاده از روش یادگیری ماشین افزایشی در شبکه های عصبی SPIKING در حال تکامل آنلاین

پیام:
نوع مقاله:
مقاله پژوهشی/اصیل (بدون رتبه معتبر)
چکیده:

تشخیص نفوذ در تحقیقات سیستم های کامپیوتری با اهمیت خاصی دنبال میشود و برای کمک به مدیران امنیتی سیستم در جهت کشف نفوذ و حمله به کار گرفته میشود. اهمیت تشخیص ناهنجاری ناشی از این واقعیت است که ناهنجاری در داده ها به اطلاعات مهم قابل استفاده درمجموعه ی گستردهای از حوزه های کاربردی میباشد. روش های تشخیص نفوذ در بسیاری از دامنه های کاربردی مورد استفاده قرار میگیرند و هردامنه نیازمند روش متفاوتی است. در این پژوهش نیز روشی برای بهبود تشخیص نفود در شبکه های رایانهای با استفاده از داده های جریانی مبتنیبر شبکه عصبی ارایه میشود. برای ارایه روش پیشنهادی از شبکه OeSNN-UAD استفاده شده و دارای لایه های ورودی و خروجی است که یکنورون خروجی کاندید را برای هر کدام از داده های جدید تولید کرده میکند. لایه ورودی این شبکه حاوی GRFو نورونهای ورودی که GRFهابرای فیلتر کردن داده های ورودی استفاده شده اند. در روش پیشنهادی از الگوریتم ELM برای بهبود روند یادگیری شبکه OeSNN-UAD استفاده شده و این الگوریتم با قرارگیری مابین لایه ورودی و خروجی در شبکه OeSNN-UAD ارتباط بین این دولایه را بهبود داده است. شبیه سازی روش پیشن هادی در نرم افزار MATLAB انجام شد. در آزمایش اول تاثیر ELMدر روش پیشنهادی بر اساس معیارهای دقت، بازخوانی، نمره MCC ، BA،Fروی دسته بندی داده های مورد بررسی قرار گرفت و در آزمایش دوم تاثیر اندازه پارامتر Wsizeبر عملکرد نهایی روش پیشنهادی بررسی شد که نتایج بهینه مطلوبی نتیجه داد.

زبان:
فارسی
صفحات:
49 تا 61
لینک کوتاه:
https://www.magiran.com/p2635536