Thermal Design of a Fusion Power Plant and Its Waste Heat Recovery to Produce Hydrogen

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:

As climate change becomes a more severe problem each day, the need to respond to it firmly grows in importance. For decades many scientists believed fusion, or, as it is called in the engineering society, the artificial sun was the future of unlimited clean and cheap energy sources. Since 2007 when the international nuclear fusion research and engineering megaproject started as a mega cooperation project between several industrial countries, this ambition seemed to be at hand more than at any other time. This mega project was a turning point for the fusion sub-projects to emerge in many countries and regions. But as fusion projects grow in number, similar to all other energy systems, a need to analyze using the second law of thermodynamics becomes a great matter of importance. This paper aims to study the European demonstration fusion power reactor pulse integrated power plant and its waste heat recovery potential to produce hydrogen, considering the primary heat transfer system, the intermediate Heat Transfer System, including the Energy Storage System’s first option to ensure power continuity. This study shows that the fusion power plant is among the most efficient stand-alone energy systems with an overall efficiency of (85.07 and 89.1% in energy storage and auxiliary heater arrangements, respectively). Using waste heat assessments to produce hydrogen resulted in even more efficient plants and an increase of the plant’s overall efficiency to more than 94.15 and 92.05% in energy storage and auxiliary heater arrangements, respectively, close to the Carnot efficiency of a similar ideal plant, and means that the irreversibility is in its minimum state.

Language:
English
Published:
Iranian Journal of Chemistry and Chemical Engineering, Volume:42 Issue: 2, Feb 2023
Pages:
538 to 557
https://magiran.com/p2642600  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!