Optimization of Virus Yield as a Strategy to Increase the Efficiency of Rabies Vaccine by BHK-21 Cells in a Bioreactor
Rabies is a usually fatal viral zoonotic and preventable disease. The efficacy and safety of animal rabies vaccination made in permanent BHK-21 cell culture have been proven over a long period of use. By increasing the yield of cells and viruses, the efficacy of the vaccine can be increased.
The objective of this study was to optimize and maximize the output of a rabies vaccine made on BHK cells in a bioreactor.
This study examined the impacts of independent parameters, such as pH, temperature, cell density, and dissolved oxygen (DO), on rabies virus strain PV-PARIS yield for a central composite design. To achieve high viral production, this study used the central composite approach to optimize cell development.
The findings showed that BHK-21 cells were grown under the ideal conditions of pH 7.21, temperature 35.05ºC, 68.75% for DO, and 2.30 × 106 cell/mL of cell density to produce high titers of rabies virus (4.7 × 107 plaque-forming unit [PFU]/mL). High correlation coefficients (0.927) validated that the predicted model was well-fitted with the data, and the statistical analysis of the collected data indicated that the experimental data and predicted model were well-matched. The accuracy of this model’s predictions was correlated with values of adjusted R-squared (R2Adj) and predicted R-squared (R2Pred).
These upgrades lead to a more reliable and economical procedure that makes industrialization and commercialization easier.