Emotion Recognition for Persian Speech Using Convolutional Neural Network and Support Vector Machine

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
The paper discusses the limitations of emotion recognition in Persian speech due to inefficient feature extraction and classification tools‎. ‎To address this‎, ‎we propose a new method for detecting hidden emotions in Persian speech with higher recognition accuracy‎. ‎The method involves four steps‎: ‎preprocessing‎, ‎feature description‎, ‎feature extraction‎, ‎and classification‎. ‎The input signal is normalized in the preprocessing step using single-channel vector conversion and signal resampling‎. ‎Feature descriptions are performed using Mel-Frequency Cepstral Coefficients and Spectro-Temporal Modulation techniques‎, ‎which produce separate feature matrices‎. ‎These matrices are then merged and used for feature extraction through a Convolutional Neural Network‎. ‎Finally‎, ‎a Support Vector Machine with a linear kernel function is used for emotion classification‎. ‎The proposed method is evaluated using the Sharif Emotional Speech dataset and achieves an average accuracy of 80.9% in classifying emotions in Persian speech‎.
Language:
English
Published:
Control and Optimization in Applied Mathematics, Volume:8 Issue: 2, Summer-Autumn 2023
Pages:
85 to 105
https://magiran.com/p2654952