Thermodynamic analysis of high temperature heat pump system with solar collector
In this paper, the thermodynamic performance of a solar assisted high temperature heat pump with water heating application is investigated. The comprehensive simulation and analysis of energy and exergy was done by Haysis and MATLAB software. This analyzes produce some convincing results due to the use of environmentally friendly and environmentally friendly energy sources. Thermodynamic analysis in thermal energy systems is very important due to the identification of high-consumption equipment and determining the location and level of inefficiency of the system equipment. According to the results of the system energy, among the equipment of the P100 pump system and the HX1 heat exchanger, it has the lowest and the highest energy consumption, respectively. 2.09 and 22669.11 kW. Also, the exergy analysis shows that the highest amount of exergy of currents with 367092 kW is related to the input flow of the tank and the highest exergy destruction of the equipment is 15563 kW related to the solar collector. This exergy destruction of the solar collector with temperature changes throughout the year with the lowest destruction in July at the rate of 14342 kW and the highest exergy destruction of 15678 kW relates to the month of June. Among the rotating equipment, the most exergy destruction is related to the k101 compressor of the water heat transfer cycle.