A modern approach to urban climate analysis maps - Case study: Tehran
City is a living, dynamic being evolving over time in the context of physical and anthropogenic components and complex relationships between them. It is the reflection of the role and attitude of man-kind influenced by social, economic, political, cultural and geographical factors and conditions. Increased population and density in urban areas have far-reaching consequences, such as increased consumption of natural resources, land-use changes, climate change, and disruptions in the exchange of material and energy. Consequently, cities face many issues and problems, the most important of which are issues related to urban design. These include poor ventilation, high heat load, air pollution caused by the physical characteristics of cities, and insufficient attention to the capabilities, natural characteristics and climate of the region and the city.
The present study seeks to prepare an urban climate analysis map to study and analyze spatial and climatic information collected from Tehran. Urban Climate Map (UCMap) is an information-based and analytical tool that combines factors of urban climate with urban planning factors and some environmental conditions to provide an image of urban climate issues in a two-dimensional environment. Urban climate map consists of an urban climate analysis maps (UCAnMap) and an urban climate recommendation map (UCReMap). Urban climate analysis maps apply various spatial information layers of heat load maps such as building volume, urban topography and green space along with layers of land cover, natural landscape, and proximity to open spaces in dynamic capacity maps. The proposed model is generally based on the evaluation and analysis of variables affecting climatic conditions. Based on six layers of building volume, land cover, topography, proximity to open spaces, green space, and natural landscape, maps were prepared in Arc/GIS10.4.1 environment for Tehran urban area. To eliminate the unit and reach comparability and overlap, the layers were standardized and used to prepare maps of ambient heat load and dynamic capacity.
Three layers of building volume, topography, and green space were weighted and combined to create a heat load map. The other three layers of land cover, natural landscape, and proximity to open spaces were also combined to create a dynamic capacity map. Afterwards, these two maps were combined to create an UCAnMap. The resulting map was close to the on the ground realities. For example, building volume has a negative effect and increases heat load in urban areas. On the other hands, green space reduces heat load and has a positive effect. The central and southwestern parts of the city have a high heat load and core areas of the urban heat island have been calculated and obtained in these areas. The resulting map was classified into 8 categories to create urban climate analysis map of Tehran.
Results indicated that 59% of the urban area in Tehran, mostly located in the northern part of the city, has a good cooling and ventilation condition while 19% of the study area, mainly in the central, southern, and southwestern parts, faces heat stress and lacks an appropriate air ventilation condition. 22% of the study area, scattered all over the city but mostly located in the northern, western and eastern parts, faces an intermediate condition. According to the calculated heat load map, the central, southern, and western parts (in region 21) of the study area face a high and unfavorable ambient heat load. And many parts of the 4th, 1st, 2nd, 5th, and 22nd urban districts are characterized with low ambient heat load and favorable climatic conditions.
-
Carbon storage capacity in a city with a cold and mountainous climate:the case study of Urmia city and Suburb
Roghayeh Ansari-Golenji, *, Faeze Shoja
Journal of Sustainable City, -
lanning recommendations with urban climate maps The Case study of Tehran city
Mohammadhasan Korkinezhad, *, Kyoumars Habibi
Geographical Urban Planning Research, -
Quantification, The first challenge of drought risk assessment and management
Sousan Heidari, Mostafa Karimi *, Ghasem Azizi,
Journal of Geographical Research on Desert Areas,