On CP-frames and the Artin-Rees property
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
The set $\mathcal{C}_{c}(L)=\Big\{\alpha\in\mathcal{R}L : \big\vert\{ r\in\mathbb{R} : \coz(\alpha-{\bf r})\ne 1\big\}\big\vert\leq\aleph_0 \Big\}$ is a sub-$f$-ring of $\mathcal{R}L$, that is, the ring of all continuous real-valued functions on a completely regular frame $L$. The main purpose of this paper is to continue our investigation begun in \cite{a} of extending ring-theoretic properties in $\mathcal{R}L$ to the context of completely regular frames by replacing the ring $\mathcal{R}L$ with the ring $\mathcal{C}_{c}(L)$ to the context of zero-dimensional frames. We show that a frame $L$ is a $CP$-frame if and only if $\mathcal{C}_{c}(L)$ is a regular ring if and only if every ideal of $\mathcal{C}_{c}(L)$ is pure if and only if $\mathcal{C}_c(L)$ is an Artin-Rees ring if and only if every ideal of $\mathcal{C}_c(L)$ with the Artin-Rees property is an Artin-Rees ideal if and only if the factor ring $\mathcal{C}_{c}(L)/\langle\alpha\rangle$ is an Artin-Rees ring for any $\alpha\in\mathcal{C}_{c}(L)$ if and only if every minimal prime ideal of $\mathcal{C}_c(L)$ is an Artin-Rees ideal.
Keywords:
Language:
English
Published:
Journal of Algebra and Related Topics, Volume:11 Issue: 2, Autumn 2023
Pages:
37 to 58
https://magiran.com/p2671535
مقالات دیگری از این نویسنده (گان)
-
On c-completely regular frames
*, AliAkbar Estaji
Journal of Frame and Matrix Theory, Winter and Spring 2023 -
ON PRIMARY IDEALS OF POINTFREE FUNCTION RINGS
M. Abedi *
Journal of Algebraic Systems, Winter-Spring 2020