یک سیستم پیشنهادگر محتوا-مشارکتی مبتنی بر خوشه بندی و هستان شناسی

پیام:
نوع مقاله:
مقاله پژوهشی/اصیل (دارای رتبه معتبر)
چکیده:

سامانه های پیشنهادگر سامانه هایی هستند که در گذر زمان یاد می گیرند که هر فرد یا مشتری احتمالا چه کالا یا قلمی را می پسندد و آن را به او پیشنهاد می دهند. این سامانه ها اغلب بر اساس رفتارهای مشابه از دیگر افراد (احتمالا مشابه) عمل می کنند. به طور کلی یافتن افراد مشابه، به علت زیاد بودن کاربران، فرایندی بسیار زمان بر و به علت کمبود اطلاعات، نادقیق است. به همین دلیل برخی از روش ها، رو به افزایش سرعت آورده اند. از طرفی، برخی از روش های دیگر، رو به افزودن اطلاعات اضافه آورده تا در گذر این اطلاعات بتوانند دقت یافتن کاربران مشابه یا همسایه را افزایش دهند. برخی دیگر نیز، به روش های ترکیبی رو آورده اند. اخیرا محققان با به کارگیری روش های خوشه بندی پایه که بر اساس یافتن شبیه ترین کاربران همسایه با کمک خوشه بندی کاربران می باشد، و همچنین استفاده از روش های محتوا پایه و بعضا اضافه نمودن هستان شناسی به روش های محتوا پایه توانسته اند با بهره گیری از مزایای این روش ها، برخی از چالش های فوق را تا حد قابل قبولی حل نمایند. در سامانه پیشنهادگر ترکیبی پیشنهادی، از یک سامانه دو مرحله ای استفاده کرده ایم که در مرحله اول، دو مدل پیش بینی های خود را انجام داده، سپس در مرحله دوم به وسیله یک مولفه ترکیب گر، نتایج دو بخش مرحله اول با یکدیگر ترکیب شده و نتایج به دست آمده را به عنوان نتایج نهایی سامانه به ما ارایه می دهد. در بخش اول، یک سامانه مبتنی بر پر کردن مقادیر گم شده، مقادیر خالی در ماتریس امتیازدهی را پر می کند. برای این مهم، از بین روش های پرکردن داده های گم شده، یک روش که با پرکردن مجموعه داده در شرایط بسیار تنک سازگار بود را طراحی کرده و سپس آن را به روش خودمان تعمیم داده ایم. در این راستا یک روش مبتنی بر خوشه بندی فاصله گری ارایه کرده ایم. در بخش دوم که خود یک سامانه پیشنهادگر ترکیبی هستان شناسی پایه می باشد، ابتدا به کمک یک خزنده وب، اطلاعات هر قلم را استخراج کرده، سپس در یک هستان شناسی پایه به کمک یک روش پیشنهادی، اقدام به بهبود ساختار هستان شناسی به وسیله حذف یال های همسان می نماییم. بدین ترتیب دقت اندازه گیری شباهت معنایی بین اقلام و کاربران در مراحل بعدی افزایش یافته و میزان اثربخشی پیشنهادات ارایه شده به طور با معنایی بهبود می یابد. شایان ذکر است این هستان شناسی یک هستان شناسی جامع نیست. درنهایت به کمک یک روش اندازه گیری شباهت ابتکاری هستان شناسی پایه، مشابهت قلم-قلم ها، کاربر-کاربرها، و کاربر-قلم ها را اندازه گیری می کنیم. به کمک این ماتریس مشابهت، کاربرها و قلم ها را خوشه بندی کرده و سپس برای هر کاربر، کاربرها و قلم های شبیه به آن را به عنوان یک ویژگی جدید در پروفایل کاربر ذخیره می نماییم. این کار به ما کمک می کند که در آینده، سرعت یافتن کاربرهای مشابه و قلم های مشابه را بالا ببریم. در حقیقت بر اساس این ویژگی، سرعت کل کار را افزایش داده ایم. از آنجایی که ما هدف خود را ساختن سامانه ای که یک موازنه بین دو معیار دقت و سرعت را برقرار کند قرار داده ایم، با استفاده از یک مجموعه داده واقعی، از این دو معیار جهت ارزیابی سامانه پیشنهادی استفاده می کنیم. نتایج مقایسه ی روش پیشنهادی ما با برخی روش های مشابه به روز ارایه شده در این حوزه (با استفاده از یک مجموعه داده یکسان) حاکی از آن است که روش ما از روش های سریع، کندتر است، اما از آنها دقیق تر می باشد. همچنین این نتایج بیانگر این موضوع است که روش پیشنهادی از روش های دقیق، سریع تر و کیفیت آن نیز قابل رقابت و یا حتی بهتر است.

زبان:
فارسی
صفحات:
197 تا 223
لینک کوتاه:
https://www.magiran.com/p2672079