تنظیم بهینه پارامترهای شبکه عصبی عمیق در برآورد داده های از دست رفته ی علائم حیاتی در شبکه های حسگر بی سیم بدن
در شبکه های حسگر بی سیم به دلیل عوامل مختلفی از قبیل انرژی محدود، قابلیت انتقال سنسورها، خرابی سخت افزار و مشکلات شبکه مانند برخورد بسته ها، پیوند غیرقابل اطمینان و آسیب های غیر منتظره، مقدار حس شده به سرخوشه یا ایستگاه پایه نمی رسد. لذا از بین رفتن داده ها در شبکه های حسگر بی سیم بسیار متداول است. از دست دادن داده های سنجیده شده، دقت WBAN را کاهش می دهد. برای حل این مشکل، داده های گم شده باید برآورد شوند. به منظور پیش بینی مقادیر گم شده، یک مدل برآورد داده از دست رفته بر اساس شبکه عصبی LSTM (حافظه کوتاه مدت) در این مقاله ارایه شده است. این مدل پنج علامت حیاتی را به عنوان ورودی برای پیش بینی مقدار از دست رفته ترکیب می کند. نتایج نشان می دهد که sgdm-LSTM روش خوبی برای برآورد مقدار از دست رفته است. ضمنا، نتایج تجربی نشان می دهد که میانگین خطای مربع ریشه مقدار برآورد شده کمتر از سایر روش ها است. این مقدار، با بهترین ابر پارامترهای شبکه 4.1495 است.
-
بهبود نظرکاوی فارسی مبتنی بر قطبیت و متوازن سازی کلمات مهم مثبت و منفی (مطالعه موردی: نظرات دیجی کالا برای موبایل)
مهدیه واحدی پور، ، عبدالرضا رسولی کناری*
فصلنامه پردازش علائم و داده ها، زمستان 1402 -
تشخیص سرطان سینه با استفاده از طبقه بندهای ترکیبی جهت بهبود دقت
*، محدثه کریمیان، مرضیه کریمیان
نشریه مدیریت مهندسی و رایانش نرم، پاییز و زمستان 1401