تشخیص انجمن در شبکه های پیچیده پویا مبتنی بر تعبیه گراف و خوشه بندی جمعی
امروزه شبکه های پیچیده پویا به یکی از ارکان مهم زندگی بشر تبدیل شده اند و تشخیص انجمن در این شبکه ها یکی از مهم ترین مسایل در تحلیل آنها محسوب می شود. در این مقاله یک روش تشخیص انجمن مبتنی بر تعبیه گراف و روش یادگیری جمعی ارایه شده که می تواند درجه پیمانه ای بودن هر انجمن را حداکثر نماید. روش های تعبیه گراف یا یادگیری نمایش کم بعد از گره ها در گراف به علت قابلیت کاربردی گسترده آن در عملکرد شبکه های پیچیده پویا مانند تشخیص انجمن در شبکه، بسیار مورد توجه قرار گرفته اند. در این مقاله، یک روش تعبیه گراف پویا مبتنی بر یادگیر عمیق پیشنهاد شده که گراف خروجی از مرحله تعبیه گراف را به عنوان ورودی به مدل یادگیر جمعی می دهد تا با دقت قابل قبولی، انجمن ها را در شبکه تشخیص دهد. همچنین یک الگوریتم حریصانه جدید به نام پیوند جمع برای بهینه سازی تابع هدف برای مجموعه داده های مقیاس بزرگ در زمان بسیار کوتاه ارایه گردیده است. نشان داده شده که پارتیشن توافقی پیشنهادی نسبت به پارتیشن های به دست آمده از کاربرد مستقیم روش های خوشه بندی جمعی رایج، به ساختارهای خوشه ای واقعی نزدیک تر است. روش پیشنهادی به دلیل استفاده از روش پیش پردازش مبتنی بر تعبیه گراف پیشنهادی و همچنین استفاده از روش خوشه بندی جمعی، توانسته کارایی مناسبی را در مقایسه با سایر روش های رقیب از خود نشان دهد. نتایج تجربی آزمایش های انجام شده حاکی از برتری روش پیشنهادی در مقایسه با روش های رقیب است.
-
ارائه یک سازوکار مدیریت اعتماد مبتنی بر بلاکچین برای اینترنت اشیاء
زهرا جعفری، *، سید اکبر مصطفوی
مجله رایانش نرم و فناوری اطلاعات، زمستان 1402 -
تحلیل احساس در رسانه های اجتماعی فارسی با رویکرد شبکه عصبی پیچشی
مرتضی روحانیان، مصطفی صالحی*، علی درزی،
نشریه مهندسی برق و مهندسی کامپیوتر ایران، بهار 1399