Analyzing Antibiotic Resistance in Clinical Mycobacterium tuberculosis Isolates using Microplate Alamar Blue Assay

Message:
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
Introduction

Tuberculosis, caused by Mycobacterium tuberculosis, is one of the most common infectious diseases worldwide. Epidemiological studies of M. tuberculosis drug resistance are critical for improving patient treatment approaches and controlling the spread of tuberculosis. The present study aimed to determine antibiotic resistance among M. tuberculosis clinical isolates using the Microplate Alamar Blue Assay (MABA).

Methods

In this descriptive cross-sectional study, 25 M. tuberculosis isolates from clinical samples were identified and confirmed using standard microbiological and biochemical tests. Then, the MIC for the antibiotics Bedaquiline, isoniazid, rifampin, ethambutol, ofloxacin, moxifloxacin, capreomycin, and streptomycin was determined using the MABA method. The results were analyzed using SPSS version 16 software.

Results

Among the 25 investigated isolates, the frequencies for MDR, Pre-XDR, and XDR isolates were 20%, 8%, and 32%, respectively. The highest rate of drug resistance was to isoniazid (80%), rifampicin, and ethambutol (76%), and the highest rate of sensitivity was to moxifloxacin (68%). The frequency of isoniazid mono-resistance and rifampicin mono-resistance was 5 cases (50%) and 4 cases (40%), respectively.

Conclusion

Our study revealed an alarming rate of MDR and XDR M. tuberculosis strains, indicating that current first-line treatments may be ineffective for a significant number of patients. The bedaquiline resistance among the isolates with no history of previous exposure to this drug suggests unexplored resistance mechanisms. Molecular techniques to accurately identify these mechanisms may contribute to developing more effective treatment strategies to combat drug-resistant tuberculosis.

Language:
English
Published:
Journal of Medical Microbiology and Infectious Diseases, Volume:11 Issue: 4, Autumn 2023
Pages:
174 to 178
https://magiran.com/p2694753  
مقالات دیگری از این نویسنده (گان)