Numerical simulation of forced heat transfer of liquid metals in a microchannel heat sink under a magnetic field
Increasing the heat transfer rate in various industries in order to improve the efficiency of equipment, prevent damage to parts and reduce costs is one of the essential discussions in the industry. One of the solutions to increase heat transfer is the use of active heat sink. In this research, an active heat sink with Galinsten liquid metal fluid was used and the discretization of Navier-stokes equations was done using the second order upstream finite volume method. The effect of applying the magnetic field in the Y direction (perpendicular to the flow axis) to the heat sink has caused the creation of a force against the flow direction called the Lorentz force, which has caused the M-shaped velocity distribution. According to the constant flux boundary condition, increasing the flow velocity in the vicinity of the walls has caused the surface temperature to decrease and the heat transfer to improve. The results showed that the effect of applying a uniform external magnetic field in both Y and X directions with a Hartmann number of 517 improved the Nusselt number by 38% and 13%, respectively, compared to a Hartmann number of zero. The effect of applying a magnetic field in the Y direction to the heat well with a Hartmann number of 517, 38%, Hartmann number of 258, 22% and Hartmann number of 129, 13% has improved the heat transfer.
-
Improvemet Mixed convection heat transfer of liquid metal in a single channel heat sink under uniform external magnetic field
*, Ahmadreza Rahmati
Journal of Solid and Fluid Mechanics, -
Investigation on the effect of magnetic field on forced convection heat transfer of liquid metals in a microchannel heat sink
A. R. Rahmati *, A. Molaei
Journal of Computational Methods in Engineering,