Optimization of a Sustainable Keratin Extraction Process from Waste Slaughterhouse Feathers: A Practice and Business Model Innovation
Author(s):
Article Type:
Research/Original Article (دارای رتبه معتبر)
Abstract:
The extraction of keratin from natural feathers has been studied for its use in various cosmetics and drug delivery applications. There are various reducing agents to dissolve the hard keratin such as sodium dodecyl sulfate and 2-mercaptoethanol, in the present work, a novel extraction methodhas been developed using sodium sulphite, sodium bisulphite, and sodium dodecyl sulfate in the presence of urea, 2-mercaptoethanol, Ethylenediaminetetraacetic acid (EDTA), and thiourea. To increase extraction yield, the weight of feathers, time of incubation, pH, and temperature were investigated using a Central Composite Design and Mixture plan for Optimization. With the present process, we evaluated the apport of keratin treatment and extraction techniques utilizing sodium sulphite, sodium bisulphite, and sodium dodecyl sulfate in the presence of urea, 2-mercaptoethanol, Ethylenediaminetetraacetic acid (EDTA), and thiourea. The percentage yield and keratin concentration were measured using UV-Vis absorbance, Bradford, and Biuret assays. Then, the protein profile and their functional groups were characterized using Sodium Dodecyl Sulfate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and Fourier Transform Infrared Spectroscopy (FTIR). The purpose was to compare the different procedures in terms of keratin protein quality and quantity, as well as their cost-effectiveness, and to determine the optimum conditions for the keratin extraction process. The results proved that the yield of white chicken feathers keratin (81.2 %) increased using sodium sulphite (1M), sodium bisulphite (0.1 M), and Sodium Dodecyl Sulfate (0.1 M). The highest protein production was measured at 80°C in 10 h with 5 g of feathers at pH 10. This process of keratin extraction can be used from the laboratory to industrial production with high recoverability and stable properties.
Keywords:
Language:
English
Published:
Iranian Journal of Chemistry and Chemical Engineering, Volume:42 Issue: 10, Oct 2023
Pages:
3355 to 3372
https://magiran.com/p2706076