تشخیص نفوذ مبتنی بر همکاری در بستر زنجیره ی بلوکی دارای مجوز در اینترنت اشیاء به روش یادگیری ماشین
در سیستم های تشخیص نفوذ؛ افزایش نرخ تشخیص های درست و کاهش زمان آموزش و تشخیص، کاهش بار پردازشی، نگهداشت مناسب مدل تشخیص دهنده و لاگهای حاصل، به طوری که توسط افراد غیر مجاز قابل دستکاری یا پاک شدن نباشند حائز اهمیت میباشد. بنابراین در این پژوهش، با بهرهمندی از مزایای زنجیرهبلوکی و قابلیت ماندگاری آن و با بهرهمندی از معماری IDS مبتنی بر همکاری چند گره به دنبال رفع مشکلات مطرح شده میباشیم. مدل بر اساس الگوریتم درخت تصمیم است که در گرههای معماری به عنوان موتور تشخیص نفوذ فعالیت میکند. معماری متشکل از چندین گره مرتبط در بستر زنجیرهبلوکی میباشد، مدل و لاگهای ایجاد شده در بستر زنجیرهبلوکی ذخیره شده و لذا به راحتی قابل دستکاری یا پاک شدن نیستند. کنار مزایای حاصل از به کارگیری زنجیره بلوکی، مساله ی میزان حافظه اشغالی و سرعت و زمان انجام تراکنش ها توسط زنجیره بلوکی نیز مطرح می باشند. در این پژوهش مدل های ارزیابی برای معماری تک گره و چند گره در بستر زنجیره بلوکی، مطرح شده است. در نهایت اثبات معماری و تهدیدات احتمالی نسبت به معماری و راه های دفاع تشریح میشود. مهمترین مزایای طرح شامل؛ حذف نقطه ی شکست واحد، حفظ اعتماد بین گره ها و اطمینان از جامعیت مدل و لاگ های کشف شده می باشد.