Design of an Adaptive Fractional-order Controller for a quadrotor
In this investigation, using the fractional calculus, a controller for trajectory control of a quadrotor is designed. As a matter of fact, one of the most important challenges in quadrotors is changing the mass of the quadrotor for carrying loads. In this paper, the controller is designed adaptive to show appropriate response in the presence of changing mass. For designing this controller, the sliding mode controller is utilized, which the sliding surfaces are considered as a fractional model. The results of this study demonstrate the effectiveness of the fractional-order controller for trajectory control of a quadrotor with changing the mass parameter. Moreover, simulations illustrate that by changing the fractional-order a new controller can be designed which can do the same mission with less control effort. Therefore, utilizing the fractional controller, the Dynamic Load Carrying Capacity (DLCC) of a quadrotor can be increased. The results show that by considering fractional-order = 0.275, the DLCC is maximized. The innovation of this work is the investigation of fractional order controllers in determining the DLCC, which shows that by setting a certain value, the DLCC can be increased by about two times compared to the classical sliding mode control.