Novel Sliding Mode Control Approach for Quasi-Z-Source Converters with Improved Performance
A type of converter called Quasi-Z-source converters (QZSC) is becoming more popular due to its benefits, such as operating in a single stage, having smaller components, and maintaining continuous input current and a common ground. This converter is widely used in various applications that need a DC-DC converter. The small-signal analysis and linearization method are often used to control the QZSC. The linear model of QZSC does not provide sufficient stability control over a wide range. Sliding Mode Control (SMC) has become widely used for electronic power converters because of their variable structure .This paper presents a SMC for a QZSC with three objectives 1) to achieve stability across a wide range of QZSC; 2) to systematically select the proposed controller coefficients; and 3) to enable tracking of the reference voltage in spite of changes in input voltage, reference voltage, and output load. The simulations have been done with the help of MATLAB/Simulink and show the effectiveness of the proposed method.