STRUCTURAL DAMAGE IDENTIFICATION BASED ON CHANGES IN NATURAL FREQUENCIES USING THREE MULTI-OBJECTIVE METAHEURISTIC ALGORITHMS
In order to evaluate the damage state, value, and position of structural members more accurately, a multi-objective optimization (MO) method is utilized that is based on changes in natural frequency. The multi-objective optimization dynamic-based damage detection method is first introduced. Two objective functions for optimization are then introduced in terms of changing the natural frequencies and mode shapes. The multi-objective optimization problem (MOP) is formulated by using the two objective functions. Three considered MO algorithms consist of Colliding Bodies Optimization (MOCBO), Particle Swarm Optimization (MOPSO), and non-dominated sorting genetic algorithm (NSGA-II) to achieve the best structural damage detection. The proposed methods are then applied to three planar steel frame structures. Compared to the traditional optimization methods utilizing the single-objective optimization (SO) algorithms, the presented methods provide superior results.