مطالعه تطبیقی روش های خطی ARIMA و غیر خطی شبکه های عصبی فازی در پیش بینی تقاضای اشتراک گاز شهری
نویسنده:
چکیده:
اطلاع از میزان تقاضای موجود در هر دوره یکی از مباحثی است که شرکت ملی گاز در راه پاسخگویی به مراجعان به آن نیاز دارد. عدم اطلاع از میزان تقاضای اشتراک سبب ایجاد مشکلاتی مانند عدم آگاهی از تعداد پیمانکاران مورد نیاز و همچنین فقدان برنامه کنترل موجودی مناسب برای انواع کنتورهای مورد نیاز و دیگر عوامل مرتبط می شود.
در چند دهه گذشته، اقتصاددانان و علمای مدیریت برای برآورد تقاضا اغلب از روش های اقتصادسنجی استفاده کرده اند. امروزه از بین روش های پیش بینی، شبکه های عصبی مصنوعی و مدل های فازی در بسیاری از زمینه های کاربردی استفاده شده اند که هر کدام از آنها دارای محاسن و معایبی هستند. بنابراین، ترکیب موفقیت آمیز این دو روش، مدل سازی شبکه های عصبی مصنوعی و فازی، با اتکا به ترکیب قدرت یادگیری شبکه های عصبی و عملکرد منطقی سیستم های فازی تبدیل به ابزار بسیار قدرتمندی شده که هم اکنون کاربردهای گوناگونی دارند.
در این تحقیق، تقاضای اشتراک گاز شهری خانگی شهر تهران با استفاده از روش خطی ARIMA و روش غیرخطی شبکه های عصبی فازی بررسی شده و از لحاظ شش معیار ارزیابی عملکرد با یکدیگر مقایسه شده اند. نتایج تحقیق بیان گر این حقیقت است که برای پیش بینی تقاضای اشتراک گاز شهری، شبکه های عصبی فازی در تمامی شش معیار ارزیابی عملکرد، بر روش ARIMA برتری داشته، بنابراین مناسب تر است.
در چند دهه گذشته، اقتصاددانان و علمای مدیریت برای برآورد تقاضا اغلب از روش های اقتصادسنجی استفاده کرده اند. امروزه از بین روش های پیش بینی، شبکه های عصبی مصنوعی و مدل های فازی در بسیاری از زمینه های کاربردی استفاده شده اند که هر کدام از آنها دارای محاسن و معایبی هستند. بنابراین، ترکیب موفقیت آمیز این دو روش، مدل سازی شبکه های عصبی مصنوعی و فازی، با اتکا به ترکیب قدرت یادگیری شبکه های عصبی و عملکرد منطقی سیستم های فازی تبدیل به ابزار بسیار قدرتمندی شده که هم اکنون کاربردهای گوناگونی دارند.
در این تحقیق، تقاضای اشتراک گاز شهری خانگی شهر تهران با استفاده از روش خطی ARIMA و روش غیرخطی شبکه های عصبی فازی بررسی شده و از لحاظ شش معیار ارزیابی عملکرد با یکدیگر مقایسه شده اند. نتایج تحقیق بیان گر این حقیقت است که برای پیش بینی تقاضای اشتراک گاز شهری، شبکه های عصبی فازی در تمامی شش معیار ارزیابی عملکرد، بر روش ARIMA برتری داشته، بنابراین مناسب تر است.
کلیدواژگان:
شبکه های عصبی ، منطق فازی ، arima ، روش های غیر خطی ، پیش بینی ، تقاضا ، گاز شهری
زبان:
فارسی
انتشار در:
در صفحه:
133
لینک کوتاه:
https://www.magiran.com/p321872