Using Pure Bending Test in Determination of Residual Stress Calibration Coefficients by Incremental Hole Drilling Method

Abstract:
Residual stress measurement is one of the most interesting research areas in experimental mechanics. Residual stress is introduced to material due to plastic deformation of parts and can be one of the most effective parameters on design and operation of parts. ASTM E837-01 standard studies residual stress determination in parts by hole drilling method and represent calibration coefficients for flat sheets with constant stress profile. However, there is no certain standard on the residual stress measurement by Incremental Hole Drilling Method (IHDM) which is the subject of this study. IHDM can obtain stress profile by using two modified stress calibration coefficients. In this article, the stress calibration coefficients have been extracted for incremental hole drilling by using finite element analysis (FEA). FEA contains both biaxial tension test and pure shear test which a hole has been drilled step by step in the parts by removing elements and the strains changes were determined at three strain gauge positions on the surface. At last, the calibration coefficients are determined for each step and the accuracy of coefficients have been verified by a set of experimental test and a FE analysis. The experimental test contains four-point bending of an AA5056 flat aluminum sheet. The numerical analysis contains four-point bending of a flat sheet. In both cases, the stress profile can be determined easily by using analytical equations. Average analytical stress in each increment has been calculated and compared with the result of numerical incremental hole drilling method. The comparisons show that numerical and experimental results have no significant differences in first six steps but in the last four steps show an increasing errors due to the change in stress profile and hole geometry. Results presents that the calibration coefficients have suitable accuracy in stress profile determination.
Language:
Persian
Published:
Modares Mechanical Engineering, Volume:11 Issue: 1, 2011
Page:
19
https://magiran.com/p872752  
دانلود و مطالعه متن این مقاله با یکی از روشهای زیر امکان پذیر است:
اشتراک شخصی
با عضویت و پرداخت آنلاین حق اشتراک یک‌ساله به مبلغ 1,390,000ريال می‌توانید 70 عنوان مطلب دانلود کنید!
اشتراک سازمانی
به کتابخانه دانشگاه یا محل کار خود پیشنهاد کنید تا اشتراک سازمانی این پایگاه را برای دسترسی نامحدود همه کاربران به متن مطالب تهیه نمایند!
توجه!
  • حق عضویت دریافتی صرف حمایت از نشریات عضو و نگهداری، تکمیل و توسعه مگیران می‌شود.
  • پرداخت حق اشتراک و دانلود مقالات اجازه بازنشر آن در سایر رسانه‌های چاپی و دیجیتال را به کاربر نمی‌دهد.
In order to view content subscription is required

Personal subscription
Subscribe magiran.com for 70 € euros via PayPal and download 70 articles during a year.
Organization subscription
Please contact us to subscribe your university or library for unlimited access!