![]() |
پشتیبانی: ۰۲۱۹۱۰۹۰۸۹۱ support@magiran.com |
تاریخ چاپ: ۱۴۰۴/۰۲/۰۳ |
این مقاله در «بانک اطلاعات نشریات کشور» به نشانی magiran.com/p2761529 نمایه شده است. برای مطالعه متن آن به سایت مراجعه کنید. |
On Clique Mantel's Theorem | |
Author(s): | Hossein Teimoori Faal * |
Abstract: |
A complete subgraph of any simple graph G on k vertices is called a k-clique of G. In this paper, we first introduce the concept of the value of a k-clique (k>1) as an extension of the idea of the degree of a given vertex. Then, we obtain the generalized version of handshaking lemma which we call it clique handshaking lemma. The well-known classical result of Mantel states that the maximum number of edges in the class of triangle-free graphs with n vertices is equal to n2/4. Our main goal here is to find an extension of the above result for the class of Kω+1-free graphs, using the ideas of the value of cliques and the clique handshaking lemma. |
Keywords: | Maximum Independent Set، Value Of A Clique، Handshaking Lemma، Double-Counting |
Article Type: | Research/Original Article |
Language: | English |
Published: | Analytical and Numerical Solutions for Nonlinear Equations, Volume:7 Issue: 2, Winter and Spring 2022 |
Pages: | 171 -178 |
Full text: | PDF is available on the website. |